Celesta — A fully differentiable optimization framework

Diwakar Ravichandran', and Daniel Wong!

1 Bourns College of Engineering, University of California, Riverside

Abstract

Simultaneous Localization and Mapping (SLAM) is central to autonomous robotics, with Bundle Adjustment (BA) serving as the key op-
timization task in visual SLAM backends. Traditional BA solvers such as Ceres and DeepLM are constrained by centralized computation,
limiting their scalability on large-scale datasets. Distributed Accelerated Bundle Adjustment (DABA) mitigates these issues through a
decentralized majorization-minimization approach, enabling cross-device parallelism. However, DABA relies on the Louvain algorithm
for graph partitioning, which often yields imbalanced workloads due to its greedy nature. This project proposes Celesta, a fully differ-
entiable optimization framework that integrates DABA with the Leiden algorithm for improved partitioning quality and convergence.
Implemented with NVIDIA’s Thrust library, Celesta achieves robust speedups and better GPU utilization through balanced, scalable sub-
problem decomposition. Experimental results validate the effectiveness of the Leiden-based approach in enhancing parallel performance

while maintaining optimization accuracy.

Index Terms: SLAM, CUDA, Optimization

1 Introduction

Simultaneous Localization and Mapping (SLAM) is a foundational
problem in robotics. Modern SLAM systems often employ graph-
based approaches, representing robot poses and observed land-
marks as nodes, and sensor-derived measurements as edges. The
goal is to optimize this graph to find the most consistent global
configuration.

A key component of SLAM, especially in the context of camera-
based systems (Visual SLAM), is the backend optimization process
known as Bundle Adjustment (BA) (Triggs et al., 1999). Bundle
Adjustment refines the 3D structure and camera poses simulta-
neously by minimizing the reprojection error of observed points
across multiple views. It is a non-linear least squares optimization
problem commonly solved using methods like Gauss-Newton or
Levenberg-Marquardt.

Despite the progress in GPU-accelerated front-end pose esti-
mation—driven by advances in deep learning—the backend has
lagged in standardization and scalability. My project addresses
this by focusing on Bundle Adjustment as a differentiable and dis-
tributed optimization problem that can leverage the parallel nature
of GPUs.

Initial attempts at GPU-accelerated BA used centralized solvers
like Ceres and DeepLM. While these incorporate GPU-based lin-
ear solvers, they face scalability bottlenecks. The introduction of
DABA: Decentralized and accelerated large-scale bundle adjust-
ment by Fan et al., 2025 presents a breakthrough by decomposing
the global BA problem into device-specific subproblems using a
decentralized majorization-minimization algorithm. DABA also
incorporates Nesterov’s acceleration with adaptive restarts to im-
prove convergence speed without compromising theoretical guar-
antees.

However, DABA’s use of the Louvain community detection al-
gorithm to partition the BA graph introduces inefficiencies due to
its greedy nature and lack of partition quality guarantees. To ad-
dress this, we propose replacing Louvain with the Leiden algo-
rithm, which guarantees well-connected and compact communi-
ties, leading to more balanced parallel workloads and improved
convergence.

This work presents Celesta, a fully differentiable optimization

Figure 1. Bundle Adjustment

framework that integrates BA, DABA, and Leiden-based graph
partitioning using GPU-accelerated primitives from NVIDIA’s
Thrust library(NVIDIA Corporation, 2023b). The framework aims
to scale BA efficiently across multiple devices while preserving nu-
merical stability and optimization fidelity.

2 Background

Simultaneous Localization and Mapping (SLAM) is a foundational
capability in robotics, enabling an autonomous agent to construct
amap of its environment while simultaneously estimating its posi-
tion within it. The two problems—mapping and localization—are
tightly intertwined. Accurate maps require reliable localization,
and vice versa, leading to what is known as the SLAM chicken-
and-egg problem. Graph-based approaches address this by mod-
eling robot poses and landmarks as nodes, and measurements as
edges, forming a factor graph optimized using nonlinear least-
squares methods.

2.1 Frontend and Backend in SLAM

SLAM pipelines typically consist of two stages: a frontend that
processes raw sensor data (e.g., visual, inertial, or LiDAR) to pro-
vide odometry estimates and data associations, and a backend that
optimizes the pose graph to produce globally consistent trajecto-
ries and maps. The backend typically employs optimization tech-
niques like Gauss—Newton or Levenberg-Marquardt to minimize
error metrics derived from sensor constraints.

Department of Electrical and Computer Engineering

2.2 Bundle Adjustment in Visual SLAM

In vision-based SLAM systems, bundle adjustment (BA) plays a
central role in the backend. It jointly refines camera poses and 3D
scene points by minimizing reprojection error, ie., the distance
between observed image features and projections of estimated 3D
points. BA is formulated as a large-scale, sparse nonlinear least-
squares problem, often solved using iterative solvers that exploit
the block-sparse structure of the problem.

2.3 Reprojection Error in Bundle Adjustment

At the heart of bundle adjustment lies the minimization of the
reprojection error, which quantifies the discrepancy between ob-
served 2D image points and the projection of estimated 3D scene
points. Given a set of camera poses and 3D landmarks, the re-
projection error measures how well the estimated scene geometry
explains the actual observations in each frame as shown in figure
2.

Let X; € R3? denote the jt 3D point (landmark), and let the
it camera pose be defined by a rigid-body transformation T; =
[R;|t;] € SE(3), where R; € SO(3) is a rotation matrix and t; € R?
is a translation vector.

The projection of the 3D point X; onto the image plane of cam-
era i under intrinsic calibration K is given by:

pred _

ij H(K~ (Rin +ti)), (l)

where 7(-) denotes the perspective division:

X

x/z
(1| |= : @)
z ylz
The corresponding observed 2D keypoint is denoted by u‘l?]'?s €
R2. The reprojection error is then:
d
ejj = u?}’s - ull?jre . (3)

Bundle adjustment minimizes the sum of squared reprojection
errors over all visible 3D points and camera frames:

. 2
(% 247 (lless 1) (@)
where p(-) is an optional robust loss function (e.g., Huber or
Cauchy) to mitigate the influence of outliers.

In practice, this is a large-scale nonlinear least-squares prob-
lem with a sparse Jacobian structure. The Jacobian matrix reflects
how each reprojection error term depends only on the associ-
ated camera pose and 3D point, leading to efficient block-sparse
representations amenable to optimization using methods such as
Gauss—-Newton or Levenberg-Marquardt.

Py ® Computed 30 point
+ Point marked on the

image
Reprojected point

Reprojection error

Figure 2. Projections and errors across 4 images

2.4 Ceres Solver

Ceres(Agarwal et al., 2012) is a widely used nonlinear least-squares
solver developed by Google. It supports automatic differenti-
ation, robust loss functions, and multiple linear solvers. De-
signed with extensibility and performance in mind, Ceres has been
instrumental in large-scale structure-from-motion pipelines and
robotics applications. In 2022, it introduced GPU support for dense
solvers, followed by sparse Cholesky decomposition support in
2024. While Ceres scales well on moderate-sized problems, its cen-
tralized architecture and single-device focus limit its scalability in
high-resolution or multi-sensor SLAM settings.

2.5 g2o0 (General Graph Optimization)

g2o(Kiimmerle et al., 2011) is a lightweight, efficient framework
for graph optimization that emphasizes flexibility and modularity.
It allows users to define custom vertex and edge types, making it
well-suited for robotics and SLAM problems. g2o employs sparse
matrix factorization and provides support for various solvers in-
cluding Cholesky and PCG. Despite its performance on embedded
systems and small graphs, g2o lacks native GPU support and is
less suitable for modern high-throughput applications requiring
parallelism or large-scale deployment.

2.6 DeepLM

DeepLM(Huang et al., 2021) is a modern solver that leverages deep
learning principles to accelerate optimization. It improves con-
vergence rates and robustness by learning priors over optimiza-
tion steps, effectively guiding the solver using learned dynamics.
While it shows promise in scenarios with noisy data or poor ini-
tializations, its computational overhead and reliance on pretrained
models introduce challenges in generalization and deployment.
Moreover, like Ceres and g2o, it remains largely centralized, lim-
iting its performance on massive datasets.

2.7 GTSAM (Georgia Tech Smoothing and Mapping)

GTSAM(Dellaert, 2012) is a factor graph-based optimization li-
brary that elegantly combines Bayesian inference with nonlinear
optimization. It introduces the concept of incremental smooth-
ing, which is particularly effective in SLAM systems with real-time
constraints. GTSAM supports ISAM2 (Incremental Smoothing and
Mapping) for efficient updates as new measurements arrive. How-
ever, its performance saturates in extremely large-scale or tightly
coupled optimization scenarios, and its CPU-bound implementa-
tion presents challenges for real-time applications involving dense
visual data or high-frequency updates.

3 Methods

3.1 Distributed Accelerated Bundle Adjustment (DABA)

DABA introduces a distributed formulation of the classic bundle
adjustment (BA) problem, addressing the scalability limitations
of centralized solvers like Ceres and DeepLM. The core idea in
DABA is to reformulate the reprojection error minimization task
as a majorization-minimization (MM) (Ortega et al., 2000) prob-
lem. This allows the global objective to be decomposed into a set of
independent subproblems, which can be solved in parallel across
multiple GPUs.
The overall pipeline in DABA proceeds as follows:

1. Graph Construction: The BA problem is modeled as a bi-
partite graph where camera poses and 3D landmarks are
nodes, and measurements are edges connecting them.

2. Graph Partitioning: To enable parallelism, this graph is
partitioned into communities using a clustering algorithm
(initially Louvain).

3. Subproblem Assignment: Each community defines a sub-
problem that is assigned to a GPU or worker node.

4. Optimization Loop: Each worker solves its local subprob-
lem using MM updates, which guarantees convergence to a
first-order critical point.

5. Communication: Workers exchange marginal variables at
community boundaries to synchronize.

6. Acceleration: DABA applies Nesterov’s acceleration with
adaptive restart to improve convergence speed while pre-
serving theoretical guarantees.

DABA achieves significant speedups (up to 953 over Ceres and
174x over DeepLM) with minimal memory and communication
overhead. However, its effectiveness hinges on the quality of the
graph partitioning.

3.2 Majorization-Minimization

The Majorization-Minimization (MM) is a class of iterative opti-
mization methods used to simplify difficult objective functions. At
each iteration, the original objective function is replaced by a sur-
rogate function that is easier to minimize but still upper-bounds
the original function locally as shown in figure 3.

Let f(x) be the objective function to minimize. The MM method
proceeds by constructing a surrogate Q(x; x(K)) at the current it-
erate x(K) such that:

f(x) < Q(x;x®), vx, (5)
Fx®)y = Q(xk); x k), (6)

Then, the next iterate is obtained by minimizing the surrogate:

x40 = argmin Q(x; x). @

This process guarantees that the objective function does not
increase, i.e., f(x<k+1>) < f(x(k)), ensuring monotonic conver-
gence.

In the context of bundle adjustment, MM decouples the highly
non-linear and entangled error terms into local subproblems by
approximating the reprojection residuals with convex quadratic
functions. These surrogates are easier to solve in parallel across
devices and allow for analytical gradient and Hessian computa-
tion.

)

Figure 3. Example of majorization minimization

Department of Electrical and Computer Engineering

3.3 Louvain Community Detection for Graph Partitioning

The Louvain method is a greedy modularity-based community de-
tection algorithm. It seeks to optimize the modularity score by it-
eratively moving nodes to neighboring communities that yield the
highest modularity gain AQ.

+ Procedure: For each node, Louvain computes AQ for each
adjacent community and moves the node to the community
with the highest gain. After a pass, a coarse graph is built,
and the process repeats.

« Limitations:

- May yield disconnected or weakly connected commu-
nities.

— Being greedy and single-pass, it often gets stuck in lo-
cal optima.

— Can result in load imbalance across devices due to un-
even community sizes.

— Poor partitioning increases inter-GPU communication
and reduces convergence rate.

These drawbacks motivated the replacement of Louvain with a
more robust alternative.

3.4 Leiden Community Detection for Graph Partitioning

The Leiden algorithm is an improvement over Louvain, designed
to ensure better-connected and more compact communities. It in-
troduces a refinement phase that identifies and corrects discon-
nected or loosely connected subgraphs.

« Refinement: After initial greedy moves (similar to Lou-
vain), Leiden splits each community into its connected com-
ponents, ensuring all communities are internally connected.

« Stability and Performance: Leiden consistently yields
higher or equal modularity, converges faster, and results in
better-balanced partitions.

» Advantages in DABA:

— Reduces communication across devices by minimizing
community boundaries.

— Enhances convergence stability of MM updates.

— Achieves lower runtime variance due to more balanced
GPU workloads.

Replacing Louvain with Leiden is a principled decision that
directly improves the scalability and efficiency of DABA in dis-
tributed settings.

4 Implementation

The implementation of our distributed bundle adjustment frame-
work involves two major components: an algorithmic layer for
decomposing the optimization problem across devices, and a sys-
tems layer for accelerating computation using GPU primitives. We
describe each of these below in detail.

4.1 System Overview

The bundle adjustment (BA) problem is structured as a nonlinear
least squares problem over camera poses and 3D landmarks. To
scale BA across devices, we distribute the graph of variables us-
ing a principled community detection algorithm. Each subproblem

Department of Electrical and Computer Engineering

is solved independently and synchronously using a majorization-
minimization (MM) scheme, with communication only at bound-
ary variables.

4.2 Graph Partitioning via Community Detection

Let G = (V,E) be a bipartite graph where V = V. U V), consists of
camera nodes V; and point nodes V), and E denotes observation
constraints. Partitioning G into communities with minimal inter-
community edges minimizes communication across devices.

We compare two algorithms for community detection: Louvain
and Leiden. Below, we provide pseudocode descriptions suitable
for LaTeX insertion.

Louvain Algorithm
1: Initialize each node in its own community.

2: repeat

3: for each node u do

4: Evaluate modularity gain AQ for moving u to each
neighbor community C.

5: Move u to the community with the highest AQ, if posi-
tive.

6: end for

7: Collapse communities into supernodes to form a coarse

graph.

8: until no further modularity improvement

Leiden Algorithm
1: Initialize each node in its own community.
2: repeat
3: for each node u do
4 Compute AQ for moving u to each neighbor community
C.
5 if AQ > 0 then
6: Move u to C.
7: end if
8 end for
9: for each community C do
10: Identify connected components within C.
11: Split C into subcommunities if disconnected.
122 end for
13: Rebuild the coarse graph.
14: until convergence of modularity

4.3 Parallel Optimization Using
Majorization-Minimization

Each community is treated as an independent optimization sub-
problem. The local cost function is majorized with a quadratic
surrogate, and each iteration involves solving the surrogate in par-
allel. Let £;(x) be the local loss on device i. Then, at each step:

xi(k+1) (k))

= argmin Q;(x;;x;
Xi
where Q; is a majorizing function approximating £; around
(k) o) : .
x;’. A communication step then synchronizes overlapping vari
ables between devices.

4.4 GPU Acceleration with Thrust

We use NVIDIA Thrust to implement GPU-parallel primitives.
Thrust provides STL-style abstractions and enables the following
acceleration patterns:

« thrust::transform: to apply element-wise operations on
residual vectors.

« thrust::reduce_by_key: to compute grouped reductions,
such as accumulating Jacobian contributions.

« thrust::inclusive_scan: for prefix-sum based operations
used in reindexing and graph flattening.

All GPU kernels operate on compressed data structures such as
CSR/COO matrices to ensure memory efficiency. Boundary con-
ditions, such as inter-device constraints, are handled using asyn-
chronous streams and CUDA-aware communication.

4.5 Synchronization and Communication

After each local update, boundary variables are synchronized us-
ing NCCL(NVIDIA Corporation, 2023a) collectives and peer-to-
peer memory copies through MPI(Gabriel et al., 2004). This re-
duces CPU bottlenecks and allows GPU-to-GPU consistency. Nes-
terov acceleration with adaptive restart is employed globally to en-
sure fast convergence while preserving theoretical criticality guar-
antees.

This layered architecture allows experimenting with other par-
titioning strategies and solvers without entangling core logic.

4.6 Distributed Accelerated Bundle Adjustment (DABA)

The complete DABA pipeline integrates the partitioning and opti-
mization steps into a single iterative framework. The system par-
titions the graph, initializes local variables, and then iteratively
performs distributed optimization with inter-device communica-
tion and acceleration.

Notation

+ G = (V,E): BA graph with variables V = V. UV},
« P: Partition of G into subgraphs {G;} for device i
o L;i(xi): Local cost function on device i

o Qi(xg; xi(k)): Majorizing surrogate for £;

Algorithm: Distributed Accelerated Bundle Adjust-
ment
1: Input: BA graph G = (V,E), observations, initial estimates
(")
2: Partitioning Phase:
3: Use Louvain or Leiden algorithm to partition G into {G;}
4: Assign each G; to GPU device i

: Optimization Loop:
: for k = 0 to max_iter do
for each device i in parallel do
Build surrogate Q; (x;; x.(k)) using MM

1
i(k"'l) =arg IIJ](IH Qi (xi; xl.(k))

R A

Solve x

10: end for
11: Synchronize shared variables across devices

12: Apply Nesterov update with adaptive restart:

yi(k+1) _ xi(k+1) + t/; -1 (xi(k+1) _ xi(k))
k+1

13: Check convergence criterion (e.g., change in global loss or
variables)

14: end for

15: Output: Refined estimates {x]} for all variables

4.7 Summary

The DABA pipeline achieves scalable and parallelizable bundle ad-
justment by decomposing the graph into well-structured commu-
nities and applying GPU-accelerated local solvers. Community
quality directly affects load balancing and communication over-
head, making the choice of partitioning algorithm critical. Thrust
primitives simplify GPU programming while maintaining high
performance. Together, these design choices enable efficient large-
scale visual SLAM backend optimization.

5 Results

To evaluate the effectiveness of the proposed optimization frame-
work using the Leiden algorithm for graph partitioning in dis-
tributed bundle adjustment, a series of experiments were con-
ducted across multiple GPU configurations on the Washington
BAL "Ladybug" dataset (Agarwal et al., 2010). The performance
was compared against the original DABA setup using Louvain
clustering. The metrics analyzed include load balancing across
GPUs, execution time, and final reprojection error (RMSE).

5.1 Load Balancing Across GPUs

Effective load balancing across devices is crucial for maximizing
parallel performance in distributed bundle adjustment. Imbal-
anced assignment of cameras, 3D points, or reprojection measure-
ments can lead to idle time on certain GPUs and increased syn-
chronization overhead.

The total problem consisted of:

» 1723 cameras

» 156502 3D points

» 678718 measurements

Tables 1, 2, and 3 show the per-device distribution of the prob-
lem under both Louvain and Leiden partitioning for 2, 3, and 4
devices, respectively.

Table 1
Load distribution across 2 devices.

Method | Rank | Cameras | Points / Measurements
. 0 930 88804 / 396687
Louvain
1 793 67698 / 298892
. 0 865 94599 / 393272
Leiden
1 858 61903 / 293890
Observations

« For 2-device setups, Leiden yields slightly more balanced dis-
tributions of cameras and measurements than Louvain.

Department of Electrical and Computer Engineering

Table 2
Load distribution across 3 devices.

Method | Rank | Cameras | Points / Measurements
0 495 55934 / 237769
Louvain 1 689 48976 / 231331
2 539 51592 / 222008
0 495 55934 / 237769
Leiden 1 689 48976 / 231331
2 539 51592 / 222008
Table 3

Load distribution across 4 devices.

Method | Rank | Cameras | Points / Measurements

0 503 44891 / 200098

. 1 436 45113/ 203514
Louvain

2 558 39486 / 187335

3 226 27012/ 121240

0 436 44547 / 202727

. 1 568 40351/ 192701
Leiden

2 380 39106 / 163630

3 339 32498 / 150682

« The Louvain method shows notable imbalance in the 4-
device case, where rank 3 handles significantly fewer ele-
ments.

« Leiden’s refinement step improves load symmetry, contribut-
ing to its superior convergence performance and reduced idle
time across workers.

5.2 Execution Time Analysis

Execution time measurements across 2-device and 4-device setups
reveal that the Leiden-based partitioning is slightly slower com-
pared to Louvain. This is because of the extra refinement step in
the Leiden algorithm. But the excess computation is balanced with
better clusters and hence we have the overall time taken being very
similar. In the case of 3 devices, as shown above, the clusters are
exactly the same resulting in quicker execution compared to the
Louvain algorithm.

Table 4
Execution time comparison between Louvain and Leiden clustering meth-
ods across different device configurations.

Device Configuration | Louvain Time (s) | Leiden Time (s)
2 Devices 17.29 17.70
3 Devices 11.45 11.43
4 Devices 9.22 9.30

5.3 Reprojection Error

The final reprojection error, computed as the root mean square er-
ror (RMSE) over all frames and keypoints, serves as a proxy for
convergence quality. As Table 2 illustrates, the Leiden-based de-
composition improves the final solution accuracy when coupled
with Huber Loss.

5.4 Qualitative Insights

The improved partitioning provided by the Leiden algorithm re-
sults in better-balanced workloads across devices and significantly

Department of Electrical and Computer Engineering

Table 5
Final optimization error (reprojection RMSE) for Louvain and Leiden clus-
tering across device setups. Lower is better.

Device Configuration | Louvain Error (px) | Leiden Error (px)
2 Devices 0.6898 0.6896
3 Devices 0.6898 0.6898
4 Devices 0.6897 0.6896

reduces inter-device communication. This directly impacts con-
vergence speed and stability in large-scale bundle adjustment
problems.

6 Conclusion and Future Work

6.1 Key Takeaways

« Leiden while slightly slower, outperforms Louvain in both
load balancing and accuracy across all tested scenarios.

« Higher device counts magnify the benefits of refined parti-
tioning due to reduced communication bottlenecks.

« The "3 Device" case highlights the quality of Leiden’s graph
partitioning abilities being the same as Louvain or better. But
never worse.

6.2 Future Work

While the proposed framework using the Leiden algorithm
demonstrates improved load balancing and convergence charac-
teristics over Louvain in a distributed bundle adjustment setting,
several avenues remain open for further exploration and refine-
ment:

+ Robust Benchmarking Across Datasets: Although pre-
liminary tests show promise, rigorous benchmarking across
diverse and large-scale datasets (e.g., BAL, COLMAP, TUM
RGB-D) is necessary to assess generalization, performance
stability, and to identify corner cases that degrade perfor-
mance.

« Memory Leak and Access Issue Mitigation: Specific
datasets trigger memory access violations or kernel crashes
on some GPUs. Identifying the source of these er-
rors—especially in device-level community assignment and
sparse residual evaluation—requires systematic profiling and
tool-assisted analysis (e.g., CUDA-Memcheck, Nsight Sys-
tems).

« Fine-Grained Profiling for Bottlenecks: A thorough
breakdown of computational and communication bottle-
necks, especially in the Thrust-based implementations, can
guide architectural optimizations. This includes measur-
ing warp divergence, shared memory occupancy, and kernel
launch overhead.

« Exploring Alternative Optimization Methods: While
majorization-minimization ensures decomposability and
convergence, exploring minimal solvers or hybrid ap-
proaches that incorporate second-order information (e.g.,
preconditioned GN or adaptive LM on-device) may yield
faster convergence or better scalability.

« Dynamic Load Balancing: Static partitioning—even with
Leiden—may fail under runtime variability. Adaptive work
redistribution using feedback from device performance met-
rics (e.g., residual norm evolution, per-kernel runtime) could

enable runtime-efficient workload balancing.

« Integration with Modern SLAM Pipelines: Finally, in-
tegrating the framework with real-time SLAM systems and
testing performance under continuous trajectory updates
and loop closures will validate its applicability in practical
robotics.

References

Agarwal, Sameer, Keir Mierle, et al. (2012). “Ceres solver: Tutorial & reference”. In:
Google Inc 2.72, p. 8.

Agarwal, Sameer et al. (2010). “Bundle adjustment in the large”. In: Computer Vision—
ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece,
September 5-11, 2010, Proceedings, Part II 11. Springer, pp. 29-42.

Dellaert, Frank (2012). “Factor graphs and GTSAM: A hands-on introduction”. In:
Georgia Institute of Technology, Tech. Rep 2.4.

Fan, Taosha et al. (2025). “DABA: Decentralized and accelerated large-scale bundle
adjustment”. In: The International Journal of Robotics Research, p. 02783649241309968.

Gabriel, Edgar et al. (2004). “Open MPIL: Goals, concept, and design of a next gen-
eration MPI implementation”. In: Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 11th European PVM/MPI Users’ Group Meeting Budapest,
Hungary, September 19-22, 2004. Proceedings 11. Springer, pp. 97-104.

Huang, Jingwei, Shan Huang, and Mingwei Sun (2021). “Deeplm: Large-scale non-
linear least squares on deep learning frameworks using stochastic domain decom-
position”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10308-10317.

Kiimmerle, Rainer et al. (2011). “g 2 o: A general framework for graph optimization”.
In: 2011 IEEE international conference on robotics and automation. IEEE, pp. 3607-3613.

NVIDIA Corporation (2023a). NVIDIA Collective Communications Library (NCCL).
https://developer.nvidia.com/nccl. https://developer.nvidia.com/nccl.

— (2023b). Thrust: C++ Parallel Algorithms Library. https://github.com/NVIDIA/
thrust. https://github.com/NVIDIA/thrust.

Ortega, J. M. and W. C. Rheinboldt (2000). Iterative Solution of Nonlinear Equations in
Several Variables. Society for Industrial and Applied Mathematics. por: 10 . 1137/
1.9780898719468. eprint: https : / /epubs . siam. org/doi /pdf/10.1137/
1.9780898719468. URL: https: //epubs . siam.org/doi/abs/10.1137/1.
9780898719468.

Triggs, Bill et al. (1999). “Bundle adjustment—a modern synthesis”. In: International
workshop on vision algorithms. Springer, pp. 298-372.

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://github.com/NVIDIA/thrust
https://github.com/NVIDIA/thrust
https://github.com/NVIDIA/thrust
https://doi.org/10.1137/1.9780898719468
https://doi.org/10.1137/1.9780898719468
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719468
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719468
https://epubs.siam.org/doi/abs/10.1137/1.9780898719468
https://epubs.siam.org/doi/abs/10.1137/1.9780898719468

	Introduction
	Background
	Frontend and Backend in SLAM
	Bundle Adjustment in Visual SLAM
	Reprojection Error in Bundle Adjustment
	Ceres Solver
	g2o (General Graph Optimization)
	DeepLM
	GTSAM (Georgia Tech Smoothing and Mapping)

	Methods
	Distributed Accelerated Bundle Adjustment (DABA)
	Majorization-Minimization
	Louvain Community Detection for Graph Partitioning
	Leiden Community Detection for Graph Partitioning

	Implementation
	System Overview
	Graph Partitioning via Community Detection
	Parallel Optimization Using Majorization-Minimization
	GPU Acceleration with Thrust
	Synchronization and Communication
	Distributed Accelerated Bundle Adjustment (DABA)
	Summary

	Results
	Load Balancing Across GPUs
	Execution Time Analysis
	Reprojection Error
	Qualitative Insights

	Conclusion and Future Work
	Key Takeaways
	Future Work

